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The equations of equilibrium of an isotropic nonhomogeneous medium in which
the elastic modull are nonconstant, differentlable functlons of position and
Poisson's ratio v has a constant value, have been studied by making use

of the methods of separation of variables and integral transforms. The equa-
tion for the stress functions in isothermal coordinates has been given
together with some applications. In the three-dimensional problem, condi-
tions have been found for the existence of radial stress distributions. In
particular, the case where the elastic modulus depends on a power of one of
the Carteslian coordinates has been investigated. In this case, it has been
established that the fundamental functions for the two-dimensional problem
of a strip are certain confluent hypergeometric functions. The application
of the Fourier method has been studied for three-dimensional prqblems — mainly
in the case of axlal symmetry. A method has been given for the numerical
solution of the Boussinesq problem in terms of the familiar Flamant problem.
In the particular case of a power law, when the Flamant problem has an exact
solution, 1t turns out that the Boussinesq problem has an exact solution.

1. In the plane problem for an isotropic nonhomogeneous medium with a
constant Polsson's ration,when there are no body forces or thermal stresses,
the equation for Airy's stress function F has the form [1]

*m PF *m tF Pm oF
A =AMAR)=F5 + 5w — 2 mayamsy (1.1)
1 o ot
A

It can be deduced by substituting the expressions for the strains

d aF i} F
m=g=m[—atU—VAF], =G =m[-F+—vaF]
a a 0%F
=gzt m=—2m5g (1.2)

into the compatibility condition. The notation (1.1) relates to a state of
plane strain., In order to transfer to a state of plane stress it is neces-
sary to change v into w*= /(1 + v) . This equation is the Buler equation
in the variatlonal problem for the functional
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J=\m[(m5) — 5+ (1 —v) (AF)]dzdy (1.3)

As was first pointed out by Castigliano and can be verified by direct
calculation, the expression on the right-hand side of (1.1} is the Jjoint
invariant of two stress tensors defined by the functions 7 and m (F de-
fines the true stresses and m the fictitious stresses).

Therefore, in the isothermal orthogonal coordinates

E+im=1 t=/( |7

a &
=h A=8 (3-5. + 5’@)
Equation (1.1) assumes the form

A — v) A (MAF) = DggmDyoF + DymDegF — 2Dy ,mDe,F  (1.4)

where 2 1s an operator defined by the equations

_ 0% | oh @ oh @ i ok 0 ok 9
DEE_hza—EﬁTh( ), D"m=h2'ﬁi+h( ————— )

GEIL ~ omdm dndn  oEdE
_ 0 oh 0 8h 0
Den = 1 57+ (5 53— mt) (1.5)
For the stresses we have [ 2}
Oy = DEEF, O = D“F, Tgyg = — DE,,F (1.6)

In the polar coordinates € = 1lnr and n = o Wwe have

o (Bt e )] = (55 B - B

®m om\ (0%F oF %m om\ [ 0°F oF
+(% — %) (75 + 5 — 2 (2o — 70) (oem —70) (1.7
If in Equations (1.1) and (1.7) we set
m = mye*+hv (1.8)
m = mye%thn = m raef? (1.9)

an equation with constant coefficlents 1s obtained that significantly sim-
plifies the formulation and solution of problems.

Certain problems with a modulus as in (1.8) have already been solved [3].
In this case, separation of varlables cannot be applied to Equation (1.4).

2, The theory of elasticity of nonhomogeneous media introduces the prob-
lem of finding the distribution of the materlal constants which admits the
given state of stress. Such problem was first posed and solved by Lekhnits-
kii [4] for a state of radial stress, In the cited paper the problem was
solved without use of a stress function. The obtained solution 1s not gene-
ral in the sense of the theory of partial differential equations. We will
give a solution that 1s general in the above-mentioned sense. We have
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e =Te=0, F=rd(), o =+(@+0) 2.1)
Under these conditions, Equation (1.6) assumes the form
¥ 1 v ”
A(—r_)=(1-—v)r57’ =@+ 0)m (2.2)

This equation has a closed solution with arbitrary parameters
= r* (A cos np + B sin ng)
n=n@)=VU0—a) +av/ {1 =¥ (2.3)

Consequently, the more general solution with arbitrary functions can be
represented by the Stlieltjes integral

= {r= lcos g () df (@) + sin gn (o) dg (@)} (2.4)

where r(a) and g(a) are arbitrary functions. The solution given in [4]
can then be obtained by making s(a) and g(a) step-functions. In the same
paper 1t has been shown that a power-law dependence of the elastlc modulus

M = Ky* on the Cartesian coordinate y is included in thls class of solu-
tions. It can be obtained when o = — x 1n Equation (2.3). In the cited
paper no formulas were given for the displacements. Here, we will deduce
the corresponding results for a half-space when a concentrated normal force
P 1is applied to its boundary {the Flamant problem)

g, = — CPr! (sin @)* cos ¢ (Y/,n — @) (2.5)

_ fi (sin )+ cos g (= — ) do] " = (2.6)

’ O (L A I T4 e (Lt k— )]
= At (2= F)

1—wv)CP | 1 f— CP- | 1
u, = _(__?-KL,)C-—-;ECOS(](TZJI—(P), Uy = ()K——k_(vil%k—) sin ¢ (-—n—cp) (2.7)

g=VUl+hH U —k/(1—w)l

Consequently, when y = O the vertical displacement 1s

(1—~v)qCP . ng

k
o) = Rk B M =Ygy siny (28)

The formulation of the problem of the action of a dlstributed loading
p(x) 1s meaningful provided 0 Sg k < 1. Then

v(z) = 200 p (B |2 — Edt (2.9)

where the integral is extended over the whole loading section. When x = O,
the elastic, modulus becomes constant, u = k¥ , and the equation turns into
the equation of the contact problem for a homogeneous half-space [5].
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v (z) = ﬁg p (&) In f-;:-}é-! dE + const, = & (v, 0) =20

By calculating in the same way the displacements produced by a shearing
load applied to the boundary, in place of the single equation (2.9), we
obtain a system of equations for the distribution of the normal and shear
loadings p{g) and ¢{g) . This was done by Galin [6], where it was alsc
proved that the solution of the problem for a point force 1s unique. This
is important, because in this case the boundary y = O 1is a line of singu-
larity.

3. In the present case, the occurance of the singularity has been con-
nected with the fact that such a nonhomogeneous medium cannot be physically
attained. This same circumstance also implies other consequences, i.e,
bounds for the possible values of the Index x in the power law, This is
an obstacle to its applicatlion as an interpolation formula for deslgning a
foundation. In the work of the reactive préssure the fundamental contribu-
tion arises in layers near the surface, but precisely in this region the
interpolation formula agrees badly with reality. At the same time the power-
law formula is one of the most simple along with the exponential one, There~
fore, there is interest in the equilibrium of an elastlec strip in which the
dependence of nonhomogenelty on depth can be represented by a power law with
the line y = 0 lying outside or on the edge of the strip where it becomes
infinitely rigid on passing into the half-space, We wlll show this does not
imply a significant complication of the problem in comparison with the prob-
lem for the half-space consisting of homogeneous layers or with a nonhomo-
genelty that can be described in terms of an exponentlal law. In fact, when
m = Oy~ %, Equation (1.1) gives

- k{1 4k 0F
D (Y RAF) = ”‘%”_j::v—)y'k_zgp (3.1)
Representing F{x,y) by the Fourier integral
Fag) =\ =@ b d (3:2)
—o0
simple calculations yield (3.3)
PGt -8 e r 0 (oo )

This equation can be written in dimensionless form by setting n=gy .
Then we have

d2
(s — 1)/ — 2 (s — )/ AR S =0 (3.4
wWe will represent the solution of this equation by the Laplace transform

7 () = \evo (e (3.5)
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taken over a sulitably chosen contour [7]. After integratsion by parts and
reductions we obtain Equation

d d:
e—1rR+2k+HE -1ty (3.6)
+k+3)(k+4)+h—2k—4lg=0
This equation has regular singularities at the points ¢ = -1, 1, » ,
Calculation of the characteristic exponents yields the scheme of the general

solution
1 —1 )

p(t)= P \—*%B+k—g —11@+k—q) 3+k
—Y2@+k+q) —V21(3+k+9) b+ k
The substitution 2y = 1 — ¢ brings the elements in the upper row into

the standard form (0, 1, ») . As independent particular solutions we can
take the following hypergeometric functions

o= [u(l— u)]_l/'(a+k)+‘/'qu 1(g, ¢+ 15 u)

1 . 3.7
¢ = u(t —u)l” Alarkrt Mu'an 10, ;1 — g, )

which, of course, can be transformed into the elements

¢ = u"/n(3+k)+l/:q (1 — u)—l/l(s*‘k)"/lq’ Py = u"/:‘3+k)-'/xq (1 — u)"/l(3+k)+'/nq (3 8)

Introducing these expressions into the Laplace transform (3.5), we find
that ‘the independent particular solutions of (3.4) are [7] the confluent
hypergeometric functions #(6; o; &) , Y(a; ¢; x) , where G=— (1 +x)+ 3y,
o= ~(1+%5), &x = 2n with a supplementary factor € . The general solu-
tion has the form

fM=e"{CD(—Y, (4 + k) +Yeg; — (1 + k); 29) +
FCY (=Yg + k) + Yegs — (A + K); 29) +
+ OO (=Y, (4 + k) — Yags — (1 + K); 29) +
+CY (—Ya(l + k) —Yyq; — (1 + k); 21)) 3.9)

or, changing to Whittaker functions,

f(m) = 0 (C Mg, -1 (20) + CaWoyg, 1o (20) +
+ CsMyq, 1 (2) + C;"V'/sq. -1k (21)} (3.10)

In the theory of integral transforms with Whittaker functions, a certain
amount of progress has been made recently (see [8]). Therefore, we have the
oppertunity of applying the methods of integral transforms both to the study
of the state of stress in plates and to the study of related models of elas-
tic foundations., Here we will consider one examplé in which the first fun-
damental problem for a strip on a rigid foundation under the action of normal
loading on the upper boundary has a relatively simple solution.
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4, We will assume that m = oy inside the strip O< y< g, and m = O
for y < 0. The case of an exponent x =-—1 1s singular since the method
considered above then gives only two independent particular solutions of
equation {3.3). However, in the present case this equation can be solved
directly. By reduction of order, together with the required regularity of
7(y,e) at y = 0, we have

d_’_f _ 4oty
— §3f ”

o gor the sirains and stresses from Pormulas {1.2) and {3.2), it follows
a

(4.1)

c
e\ [erd—v(G—o)]ie oo
m" (4.2)
= \ [—amta—v(G—e)]re o
o
o, = S E2f (y, £) %€, o _= OSO %’L g, = —igg%e‘f@dg (4.3)
—c0 —c0

Hence we conclude that when = 0 we have only & rigid displacement
that we assume to be zero and that on tne boundaries y=0,y=H there
will be no shear stress when |, {0, E) = f (H, E) = 0. Hence it follows that

oo

1 .
FUH, 8) =575 S e%p (t) dt (4.4)

-0

The solution of Equation (4.1) satisfying these conditions has the form

f G, a)=5—%,fg§’—’ S ety (4.5)
where —
H oh III .
cosh [+ “ sinh
gy, &) = [S Ea ® } Ky & o "a—u da (4.6)
L] ¢
K, & ) = LG H —yeemnba, oy @7

soshf, (H — a)eoshBy, o>y

The exponential integrals occur in this solution are tabulated func~
tions and there is no obstacie here in obtaining numerical results.

%, Before passing to the consideration of three-dimensional problems,
we will establish a result of a negative cheracter, namely that in a three-
dimensional nonhomogeneous medium it 1s in general impossible to have &
radial distribution of stresses. More precisely this means that the Lekh-
nitekii problem does not have a solution in arbitrary functions like {2.%),
There is only one particular solution containing one arbitrary function.
When the elastic modulus depends on only one coordlnate, this solution is
identlcal with that obtained in [9].

Here it 1s convenient to pass to spherical coordinates. The equilibrium
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equations reduce to the single equation

3;-; +26=0 (5.1)
Hence, by virtue of the axial symmetry of the problem, it follows that
or = 0 = rt§ (@) (5.2)
For the atrains we have
Crr = &,  €gp ='€pp = — VE, €y = €gp = Epp = 0 (e=0/E) (5.3)

We will not write out the compatibility conditions in spherical coordi-
nates [10] but will quote the result of substituting expressions (5.3) into
them

{ 0%
(v 50 T+ °°‘°ae+2 )+2(1+v)8—0 %+ ’arae‘o (5.4)

a® 0?
g 0% o o __ 2 9% de  0J%
vri o5 (re)+rar cot Bae 0, v o (re)+rar a9,_0
From the last two conditlons 1t follows that
% de
m— “05;=0 e=1Ff(r) 0 + g(r) (5.5)

Substitution of this result into the second condition (5.4) yields
f@)y+vrf (ry =0, f(r)=A4rw 2.0)

Substitution into the first condition leads to the equations

v+1)g@) +vrg (r) =0, g (r) = Briw (5.7
Thus
€= Ari” cos@® + Bri-wv (5.8)
This function satisfies the last equations (5.4) identically.

Hence, for the elastic modulus we have

riv-1g ()]
e T EY ] (5.9)
It g 1is a function of 2 only, then
/-1
SO =C(cos®), E=%4—3 (5.10)

When 4 = O we have one, and wvhen 5 = O we have another of the solu-
tions deduced in [10]. For the displacements we have

r—A

A v cos @ — vBr1v, ug = v——-vﬂi Ari-vsing (5.11)

(the rigid displacements has been omitted). On the surface =z =0, 8 =4&n

they are
Up = — vBr-iv, Ug =

A (5.42)

In order that this solution is meaningful in the case of a distributed
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load, 1t is necessary that the indices in these formulas are greater than
-2 . If B # 0, this requires v > $# , which is physically unrealistic.
When B = 0, it is necessary that y > 3 . Thus, actually

E = z22F (8), S(0)=cF(0)(cos)-1 (1,5 y>1y (5.13)
When F(g)= const , we obtain the solution found in [10].

6, The equilibrium equation for the displacements 1n a nonhomogeneous

medium can be obtalned in the usual way from the Cauchy equations by substi-

tuting into them the expressions for the stresses in terms of the strains.
Introducing the notation

6 = div u, € =defu

the stress tensor is given by Formula

S =MI+ 2u¢ (I 15 the unit tensor) 6.1)
and the equilibrium equation for the displacements has the form

(A +p) v 6 + pau + 6gA + 26-gp = 0
A = grad div — rot rot (6.2)

where

When v = const , this equation simplifies to
1
agd + Au + (@ — 1) 8I+2€]-vlnp = 0 (t==%) ©3
We consider a half-space with the elastic modulus depending on the depth,
u = ulz) . In Cartesian ccordinates, we have

ag-g-i-Au-i"I(z)ezx:O' ag—z-i-Av-i-Q(z)ezu:O (6.4)

a%§+Aw+q(z)[(a—i)e+2e,,1=0, q(z)=d£zlnp,(z)

If , depends on the depth exponentially, then ¢(») = const , and Equa-
tion (6.4) reduces to a system with constant coefficients, This case will
not be considered. Other related problems have already been considered [11].
Below we will treat the basic case when 1/¢(») has the form ax + b , or,
by translating the coordinate orlgin, more simply 2/k, 1l.e. when there is
a power-law dependence of the elastic modulus on the depth, u = X2*% ; here
u=a+ b 1s a special case. We will seek the solution of equation (6.4)

in the form of the Fourler integral transform
oo

(, o, 0) = {§ (U, v, W) et &= din (6.5)

—00

In the general case, this leads to the sixth-order system

ot (i% — U — V) + (5x — o) + ¢ () (& + &w) =0 (6.6)
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an(i% — 80U — W) + (53 — o) + 9 (2) (J + W) = 0 (6.6)

o[ T +i(t G + g+ (G — o)+
+q(z)[(a+1) ‘Z—v-:+(a—1)i(§U+nV)]=0 E*=E'+ 1)

The study of this system in the general case of an analytic coefficient
g(z) 1s difficult, In the case of power law, a Laplace transformation makes
it possible to reduce the order of the system by two and to eliminate the

regular singularity at infinity. Assuming in this case
w0, v, W) = { (@ X, ¥) endt ©6.7)

after some calculation we arrive at a system contalining the first time deri-
vatives of the functions @, X, W. In order to avoid an awkward notation,
we will present this system in matrix form

(1] 12— P% —_ aﬂaﬁ —_ aa lat& -1
i[x]r_[ —ag1 12— p?2— a’n? iatn ]x

at | g otk it (o + 1) 2 —p?
k—2)t 0 (k —a)i§ 1]
x[ 0 (k—2)¢ (k—a)in ]x[x] (6.8)
(kt —k —a) i (ka—k—a)in (%4 1)(k—2)¢ ¥

The determinant of the first matrix is
Alt) = (a + 1) (& — p??
For this system the point at infinity is a regular point. Nevertheless,

the analytical investigation and the construction of solutions is a complex
and difficult problem.

T. The situation 1s somewhat simplified in the axisymmetric problem. In
this case, the system of equations for the displacements reduces to two inde-
pendent subsystems, one of which describes a state of spherical symmetry

a9 u ou ow
“37+A“'—ra+‘1(z)(5;+57)=0
a0 ow
a&+aw+q(1)[(d—-1)6+23;]=0
d 2 » , 19 , &
u=u,, w=u,, 9=b$+;_r+a_1_:’ A=3ﬁ+75§+ﬁi

and the other a state of torsion

Ar—2+q@2 =0, v=u, (1.2)

(7.1)

The last equation can be reduced to a form

pro+g (@ =0 (»=22)
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In the case ¢ (z) = kz', 0 <k <1, this equation was studied in[12],
where the fundamental functions (hypergeometric were determined in a system
of oblate spherical coordinates. Here we will give the reduction of (7.1)
to a system of first-order, ordinary differential equations (when g(z) = xs*).
For this we wlll represent the displacements U, w by the Hankel transforms

u= s/ 09 f(z, 9)ds, w= (s r9) g (2, 9) ds (1.3)
0 o
For the functions y and ¢ we then obtain the system

g—f;—(a-}—h s’%g — as Z—Z—}—q(z)(g—-sg)z()
(a+1)%—-s2g+asg+ q(z)[(a—i) sf+(a+1)%’]=0 7-4)

By setting ¢(s) = k2" and making the substitution ( = ze , we obtain
df d?
;[G@+(d+1)3€_§‘—g]+k[(a,—-1)f_|_(a+1)§§]=0
d2
C[gg—ﬁ_(a—l—i)g—aj—g]—{-k(%_g):()

We now reduce the order of the system by means of the Laplace transforms

(7.5)

o =Semea,  g@=vwea (7.6)
This ylelds
de] __ [eu(t), an() 4
zle]=lome oo < [%] (7.7)
4 =220 A@=(@+1)@E—1 (7.8)

A
Ap=tla+1) (k-2 — oo —k—a) — (k — 2)]
Ap=(a+1)(ha —k —a) 2 — (& — k)
Ay = (0 — k) 2 — (o + 1) (ko — k — o) (7.9)
Ap=tla+1)(—22 —(a+12E—2) —a(@— k]

As can be seen, all the singular points of this system are regular, By
eliminating one function, we obtain for the other a second-order equation.
A quadratic transformation then reduces the latter to the Heun equation with
four singular points (of these, one 1s an apparent singularity).

We point out that in solving the plane-strain problem by the method of
Fourier transforms (in the z-coordinate) and by the Laplace transform (in
the y~coordinate), one is lead to the same system of equations (7.7). At
the same time, in the plane problem the analytical aspect 1s conslderably
simplified by using a stress function. The derivation of this function in
the problem of a strip reduces to a Fourler transform of a linear combina-
tion of Whittaker functions, whereas the displacements have a more compllica-
ted analytical structure as can be seen from Formulas (1.2). Thus, in the
axisymmetric problem one 1s compelled to seek another method that is more
effective from the analytical point of view. Here also a stress function
might be introduced, but 1t is more rational to make use of the relatlons
between plane and axisymmetric problems as established by Mossakovskil {153]
and Aleksandrov [14] for a homogeneous medium. Since these relations are
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represented by integral transforms that do not affect the z-coordinate, they
remain valid also 1n the case of nonhomogeneity with respect to this coordi-
nate (*), In the last section we will give an application of this method to
the problem of calculating the normal displacements on the boundary of a
half-space produced by a concentrated normal force applied to the boundary
(the Boussinesg problem).

8., Since the shear stresses on the boundary vanish, the present problem
can oe handled with the two formulas [14]
+r t t

W) = v ey P ={p(@ds =1 {20 @)

Ve Vies

Let P(r) be a plece-wise integrable, bounded function. (The dash super
scripts denote values for the plane problem).

-r

Then P (t)=0(¢t"*) as ¢t - » . Bearing this in mind, for the plane
problem the displacements are given by

w- ()= p- O Kz, yat=—{P- & a (8.2)
Let I
K (&) =K (z—t), K@=\ K (e=ds (8.3)

In view of the remarks regarding p~(¢t), we can reverse the order of
integration in (8.2) after (8.3) has been substituted into it, Thus

w-(2) = | isK, (s) ededs { etop (1) e (8.4)

and from the first formula of (8.1) follows

(o] (o]

w () = \ sk, (9 To(rs) ds § P (1) de (8.5)

—00 —00

The result of substituting the second formula (8.1) into the inner inte-
gral (8.5) can be obtained after overcoming some complications. However, it
wlll not be necessary to do this. For the concentrated force P 1t 1is easy

to find that P (t) —_ (znz)-l Pi!
and the inner integral is equal to - timggns . In this case we find
(o0}
w(r) =P sK, ()7, (rs) ds (8.6)

0
For a unit force P = 1 the displacement w (r) = K (r) is the kernel of

the functional for the displacements on the boundary of a half-space (1ayer)

vy ={{rEGVEEadn, r=VE-DFe=F @67

Inverting (8.3) and inserting the result into (8.6), we obtain a direct

*) The author thanks V.I. Mossakovskil for suggesting this 1idea.
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representation of the kernel I (7) in terms of the kernel K~ (x) of the

symmetrlic plane problem .

K(r) = %‘S K (2) ﬁ%ﬁ (8.8)

When applied to the power-law kernel (2.8), this glves

. 1 T (ot Yk
K (1) = g 1 0 (v By roie (8.9)

Hence, when k¥ = 0 or v = 1/(2+%) one can derive already known results
[5, 10 and 12].

Note 1. The direct calculation of x.,"(s) from (8.3) sometimes
leads to the calculation of the integrals (8.67 between the terminals of the
admissible values of the parameters %as in the example treated). Since the
derivation of (8.8) consists in the calculation of the convolution of a
generalized Fourier transform and a Hankel transform, these integrals should
be understood 1n a generalized sense.

Note 2 . In the case where the elastic modulus depends on the power
of one Cartesian coordinate, the Fourler transforms of the stresses generate
the linear manifold »f confluent hypergeometric functions of this coordinate.
The transform connecting the plane problem with with the axisymmetric prob-
lem does not alter the analytic character of this manifold. In the axisym-
metric problem the Hankel transforms generate the same linear manifold. This
de.ermines the degree and character of the analytical difficulties in both
the above problems with such nonhomogeneltles in the elastic properties.
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